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A new discrete mathematical model of molecular shape is proposed, making use of the
partition property of a representation of molecular shape. According to its geometrical and
topological structure, a molecular surface can be partitioned into unbounded two-dimensional
subsets (domains) and some common subsets of closures of two or more domains. The
sets of these domains as a base of a finite topology, containing the Boolean n-cube as a
lower Boolean sub-lattice of this topology, defines the domain of the proposed logical model.
A logical function can be obtained that reflects the properties of the topological domains as
well as the interrelations on the set of domains. Based on classical or quantum-chemical rep-
resentations of molecular shape, these models allow one the implementation of methods of
logical diagnostics in chemistry, and the definition of a metric on the set of molecular shape
equivalence classes. The families of molecular shapes can be considered as sets of logical
models. The proposed model is unified in the sense that the structures of differentiable and
non-differentiable surfaces can be represented in the same mathematical framework. These
logical models will also work for interpenetrations of the above types of surfaces.
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0. Introduction

The study of molecular shapes and the recognition of similarity among mole-
cules are of fundamental importance in the understanding of chemical and biochemical
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processes. Molecules with similar shape features often show similar chemical behav-
ior on both the molecular and macroscopic levels. Molecular shape has a fundamental
influence on both the static and dynamic properties of molecules; molecular interac-
tions, molecular recognition, chemical reactions, and most other aspects of molecular
behavior are directly dependent on molecular shape [1,2]. One may define and char-
acterize different molecular bodies and surfaces depending on the selected geometrical
or physical property one is interested in. For example, space filling models or alter-
native van der Waals surfaces (VDWSs), dot-body representations, molecular isodensity
contours (MIDCOs), molecular electrostatic contours (MEPCOs), or cross-sections, rep-
resenting intersections of any two of the above types of surfaces are among the possible
choices [3–5].

At present, the most advanced shape representations of molecules can be obtained
by combining the classical models with modern quantum-chemical approaches [6,7],
whereas recent developments in molecular modeling and computational chemistry, have
set the stage for the novel application of discrete mathematics to chemistry [8–11]. The
known discrete mathematical models, serving as formal descriptors for the different
chemical shape representations are based mainly on graph-theoretical [12–17], alge-
braic topological [18–21], and combinatorial [22–25] approaches, but continuous fea-
tures may also be represented, by invoking a dependence of these models on continuous
parameters. For example, a finite number of graph-theoretical or topological invariants
are sufficient to characterize the molecular shape, that leads to a discrete characteriza-
tion of the given family of continuous isoproperty contour surfaces (IPCOs) [26]. These
invariants can be used to form shape codes, shape graphs or shape matrices, suitable for
algorithmic shape comparisons. The division of the continuum of IPCOs into classes
of shape groups with respect to the equivalence relation, allows us to consider only the
essential shape features in conformational rearrangements of chemical processes. The
corresponding algebraic-topological Shape-Group Methods (SGM) are described in de-
tail in [1], and their various applications reviewed in [18–21].

In combinatorial shape models the equivalence relation for the evaluation of mole-
cular similarity have been applied, based on recognition of square-cell configurations
(“lattice animals”) or polycubes, as proposed by Harary and Mezey in [22–25,27,28].
These two- and three-dimensional models can be used for similarity analysis of differ-
ent surfaces and molecular bodies on a natural, size-independent level of resolution. It
should be emphasized, however, that a class of discrete mathematical models, based on
logical functions, and implemented as logical models for the approximation of quantum-
chemical and classical models of molecular shapes in chemical applications, is still un-
developed.

The purpose of this article is to introduce a novel logical approach and a class of
logical shape models for chemical applications, based on the fundamental concept of
logical function. Logical models of molecular shapes and their families provide imple-
mentation of methods of logical diagnostics in chemistry. As a known universal method
for comparison of discrete objects, based on logical functional descriptions, there can be
considered the method of Chegis and Yablonsky, originally proposed for testing switch-
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ing circuits, described in [29]. This method was further developed and expanded to nu-
merous applications in data analysis, including technical and logical diagnostics [30,31].
The above method can be implemented as soon as the logical functional descriptions of
discrete objects or data are obtained. A direct implementation of this basic method to
pattern recognition and clusterization theory, means considering the values of the logical
functions (corresponding to some sets of variable values, possessing physical meaning)
as the preliminary features of objects. The method allows one to chose a test set, that
is, the minimum number of those features that preserve the separating property of the
sample object models. Moreover, in terms of the initial object descriptions, it allows
one the definition of the structural peculiarity that leads to the distinction of the equiva-
lence classes of the modeling objects in terms of features from the given test set. Thus,
by using the feature values from the test set, it is possible to calculate a diagnosis that
identifies the whole object or equivalence classes of objects.

In other early contributions [32,33] elements of Boolean algebra were applied
to solving problems of structural similarity and dissimilarity by using representations,
called primitive relational structures.

A recently developed mathematical logical approach for design of logical net-
works, described by systems of Boolean functions, exploring separational properties
of binary n-cube subsets, was proposed by Jako in [34]. This approach was first im-
plemented for logical design [35] and classification of Boolean functions [34,36]. The
corresponding algorithms for classification, exploring Disjunctive and Normal Forms
were described in [37], whereas the Zhegalkin–Reed–Muller polynomial [38] and a
novel analytical representation of Boolean and multiple valued logical functions, called
as Jako Iterative Canonical Form (JICF) were implemented in algorithms proposed
in [34,39,40]. For biological applications, the above mathematical logical approach was
used in ecological studies for distinguishing spatial pattern in vegetation and species
coalitions in plant communities [41]. On molecular level the same approach was used
for similarity analysis and classification of macromolecules, considering their primary
and secondary structures as classes of ordered sets [42]. The proposed methods [41,42]
provide mapping of natural objects into binary n-cube, preserving partial ordering of
structural components.

In the present article a class of novel logical models is introduced on the basis of
known quantum-chemical and topological models of molecular shapes, and the Chegis–
Yablonsky approach to data analysis and logical diagnostics, providing the tools for
implementation of logical methods in the field of chemistry. The method proposed in
this article, reflecting symmetrical relation of arbitrary degree on the modelled object
structure, differs from logical methods [34–36,39–42], based on asymmetrical relations.
Avoiding an explicit embedding of objects into a vector space, as well as their numerical
characterization, it allows one a definition of a metric or semi-metric on the set of objects,
providing an implementation of novel metric classification algorithms [43,44].

In the first section, the quantum-chemical nature of a molecular shape is discussed.
The second section contains a detailed description of the proposed method of math-
ematical modeling of objects, assuming that the objects can be represented topologi-
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cally. A topological representation, in this case, is the definition of the topological space
(X, T ), where X is the set of object points or elements, and T is a finite topology. It is
assumed that the set X is partitioned into a finite number of subsets, some of which are
chosen as a base of topology T . Some unary and n-ary (n � 2) symmetric relations on
the chosen base are implemented to represent geometrical and topological properties of
the setX. The main idea of the method is based on finite logical partitioning of the setX.
A property of finite topology is used, where any finite topology contains a Boolean lattice
with empty set. The Boolean cube isomorphic to this lattice can be considered as a field
of definition (domain) of a logical function, reflecting the previously mentioned prop-
erties and relations. The proposed model can be implemented for advanced similarity
and dissimilarity analysis of various n-dimensional (n � 2) objects on different orga-
nizational levels, such as molecular shapes and their cross-sections, multi-dimensional
energy hypersurfaces, [46] or discrete N-dimensional systems for ecological studies.
The third section is devoted to logical models of molecular shapes and their families.
The connection with the second section arises in that the topology of a shape is based
on a partition of surfaces into 2-, 1-, and 0-dimensional subsets with some finite sets of
properties. These subsets interrelate with each other through known symmetric relations.
This allows for the implementation of the proposed method of logical modeling. Char-
acteristic properties of various types of models, such as the quantum-chemical models
based on IPCOs, the classical models based on van der Waals surfaces, and models based
on intersections or superpositions of the classical and quantum-chemical model surfaces
are discussed. It is shown that proposed models possess the same separable properties
as known models, based on shape code matrices or VDW graphs [1,9,10]. Examples are
given, illustrating how the proposed models can be used for calculation of structural pe-
culiarities for distinction of equivalence classes of molecular shapes. Generalization and
application possibilities of functional models for decision making systems are discussed
in concluding remarks.

1. The quantum-chemical and topological nature of molecular shapes

Modern quantum chemical and topological methods allow one to study many mole-
cular problems where experimental information is not available. The quantum chemical
representation of molecular shape is based on the concepts of nuclear configuration and
chemical bonding. Both of these concepts can be reformulated in terms of topology. The
basic idea of three-dimensional topological approach, formulated first by P.G. Mezey
and known as the GSTE principle, is that by using adequate topological descriptions for
molecular shapes, geometrical similarity is treated as topological equivalence.

For further analysis it is appropriate to consider the shape description, based on
different physical properties, and/or similar geometrical construction within a common
framework. For any physical molecular property P that is described by a 3D function
P(r) which is continuous in r, such as the electronic density, the electrostatic potential
V (r) or composite nuclear potential Vn(r), the level sets F(a) for any constant value a
of function P(r) can be defined as the following collection of points:

F(a) = {r: P(r) < a
}
. (1.1)
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The boundary surfaces G(a) of level sets F(a) are the isoproperty contours (IP-
COs) defined as

G(a) = {r: P(r) = a}. (1.2)

The entire 3D property function P(r) can be represented by an infinite family
of IPCOs, by taking one such surface G(a) for each value of the contour parameter a,
throughout the entire range amin� a � amax. The minimum and maximum values amin
and amaxof the contour threshold a depend on the property P and the actual molecular
system studied.

It is possible to generate a function of density-dependent radius rA(a) for a spher-
ical representation of each atom A, and construct a fused sphere VDWS representation
of a molecule that mimics a boundary surface G(a) of an IPCO for any selected density
value a. Therefore, the fused spheres model provides an approximation of the molecule
for a given threshold value a. It is is important to note however, that the techniques de-
veloped for the shape characterization of smooth, differentiable contour surfaces (such
as MIDCOs, MEPCOs, or molecular orbitals) are not always applicable to all molecular
surfaces, like VDWS, solvent accessible surfaces or union surfaces, defined by some
other criteria [46,48]. For example, at every point r of a VDWS where two or more
atomic spheres interpenetrate one another, the surface is not smooth and is not differ-
entiable. In order to perform the shape analysis of VDWS one needs the determination
of the arcs on the surface resulting from the interpenetration of the atomic spheres, as
well as the knowledge of those points that lie on the surface of three or more spheres.
The above information can be obtained from the available programs used to construct
the VDWSs, or it can be deduced from a graphical display.

In the present paper we will consider models for description of molecular shapes,
based on quantum-chemical representations using molecular isoproperty contour sur-
faces (or IPCOs), and classical hard sphere representations using alternative VDWSs as
well as cross-sections and superpositions of the above types of molecular surfaces.

The VDWS for an N-atomic molecule can be defined by two sets:

Cx = {x1, x2, . . . , xN }, xi ∈ R3, (1.3a)

and

Cp = {p1, p2, . . . , pN }, pi ∈ R, (1.3b)

where the set Cx defines the position vectors for the nuclei, and the set Cp contains the
atomic van der Waals radii, corresponding to the atoms [5,9,10].

Within a global approach to the study of molecular deformations and their relations
to molecular identity, it is advantageous to use the concept of nuclear configurations.
Furthermore, it is appropriate to restrict our study considering only the internal nuclear
configuration (i.e., the relative arrangement of the nuclei with respect to one another,
when a molecule far removed from other molecules and from sources of external field).
Each internal configuration K for a molecule contains N , N � 4, nuclei, which can be



394 A. Frolov et al. / Logical models of molecular shapes and their families

defined as a (3N − 6)-dimensional vector. This vector belongs to the metric space M of
internal configurations.

The goal of further analysis is to obtain a hierarchy of surfaces (Gn) for some given
nuclear configuration K, obtained by partitioning the surface G(K).

In metric space M for each point a of the VDWS surface G(K), there can be
defined corresponding distances d(a, xi), i = 1, . . . , N . Therefore, the surface G(K) is
partitioned into subsets

Dk =
{
a | a ∈ G(K)}, (1.4)

where k is the number of indices I such that d(a, xi) = i, i.e., k is the number of spheres
to which the given point a belongs. The setsDk can be thought as union of their maximal
connected components Dj

k , j = 1, . . . , mk :

Dk =
mk⋃
j=1

D
j

k . (1.5)

The corresponding formally defined surfaces in 3D metric space can be connected
or disconnected, but for an isolated molecule they are bounded. The shapes can be easy
mapped into usual Cartesian 3D space. The most important property of these approxi-
mations is that the corresponding surfaces can be partitioned into well-defined subsets
according to their geometrical and topological properties. This property allows us to
consider a finite set of shapes of a given geometry and topology instead of infinite set
of shapes corresponding to distinct nuclear configurations K and distinct thresholds a.
In other words, it allows one to define an equivalence relation on the Cartesian product
M × A, where A is the set of possible thresholds

(K1, a1) ≈ (K2, a2),

if IPCO’s or VDWS’s for (K1, a1) and for (K2, a2) satisfy the same topology. It means,
that each class can be represented by a unique pair, and a unique shape can be considered
for the whole class.

Now, it is possible to consider families of equivalence classes corresponding to
some given electron configuration K with different threshold values a

a1 < a2 < · · · < ak,
or to families of equivalence classes corresponding to some given threshold value a and
different electron configurations K1,K2, . . . , Kt , according to the dynamics of a mole-
cule’s behaviour (or its trajectory in the nuclear configuration space M). In the same
manner, curvature parameter b [1] can be taken into account.

We assume that equivalence classes consist of surfaces partitioned on the same
number of subsets, possessing the same geometrical properties and participating in the
same symmetrical relations. This allows us to propose a new unified method with re-
spect to distinct quantum chemical, classical and mixed model logical method that also
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allows us to distinguish shapes of distinct classes as well as obtain minimal description
of difference and introduce a metric on the set of molecular shape equivalence classes.

2. Logical modeling and comparison of objects of geometrical or discrete
structure

2.1. Finite topology property

In this section, a logical model for objects, which have geometries or discrete struc-
tures that allow for the partitioning into a finite number of pairwise, non-intersecting
parts, is proposed. The logical model reflects properties of these parts, as well as their
interrelations. The creation of the model is based on the concepts of topology and topo-
logical space, as well as on the concept of logical function [49–54]. Recall that a topo-
logical spaceis a pair (X, T ) that consists of a nonempty set X and a subset T of P(X)
such that ∅ and X belong to T , where P(X) is the set of all the subsets of the set X.
Moreover, T is closed with respect to unions and finite intersections. Such a set T is
called a topology. In particular, any finite lattice T of subsets is a topology if ∅, X ∈ T .
The elements of T are called open sets. The set M ∈ X is closed(open), if its comple-
ment M ′ is an open (closed) set. Sets that are both open and closed are called clopen
sets. For example, the empty set (∅) and the set X are clopen sets.

For the purposes of this article, only finite topologies are used. Each finite topology
can be defined by the set of their atoms, i.e., nonempty subsets a ∈ T , such that ∀b ∈ T ,
b �= a, b �= ∅, b �⊂ a. This set of atoms forms the topology base B where each
element of T , except ∅ and X, is a union of some sets in B. Moreover, a finite topology
contains all the sets that are unions of some sets in B. In this case, topology T is
called a topology of baseB. These unions, together with the empty set ∅, form the
Boolean sublattice. Topology T contains all the elements of this Boolean sublattice and
the set X. Furthermore, T is a distributive lattice. Consequently, it can be noted that
topology T has two Boolean sublattices: the previously mentioned sublattice, and the
sublattice {U,X}, where U is the upper bound of the former sublattice. In the case of
the coincidence U = X, the latter sublattice degenerates and becomes a trivial Boolean
sublattice containing only one element, X.

Example 2.1. Consider the Cartesian product X = R × R, and Jordan curve J ∈ X;
let A1 and A2 be two subsets of X truncated at the points P1 and P2, and separated by
curve J . Then

X = A1 ∪A2 ∪ J ∪ {P1} ∪ {P1},
{
A1, A2, J, {P1}, {P2}

}
is considered a partition of set X (figure 1).

Consider the topological space {X, T } with topology T of base {J, {P1}, {P2}}.
This topology contains all the bounded subsets of set X (the open sets of topology) as
well as the set X, and the empty set ∅ (figure 2).
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Figure 1. The partition {A1, A2, J, {P1}, {P2}} of the Cartesian product X = R× R.

Figure 2. The topology of base {J, {P1}, {P2}}. There are two Boolean sublattices {∅, {P1}, {P2}, {P1} ∪
{P2}, {P1} ∪ J, {P2} ∪ J, {P1} ∪ {P2} ∪ J } and {{P1} ∪ {P2} ∪ J,X}.

There are two Boolean sublattices:{∅, {P1}, {P1}, {P1} ∪ {P2}, {P1} ∪ J, {P2} ∪ J, {P1} ∪ {P2} ∪ J
}

and {{P1} ∪ {P2} ∪ J,X
}
.

Example 2.2. Consider the set X and its partition as shown in figure 1. The topologi-
cal space {X, T } can be constructed with topology T of base {A1, A2}. This topology
contains all the unbounded subsets of the set X (open sets of topology), as well as the
set X and the empty set ∅. There are two Boolean sublattices: {∅, A1, A2, A1 ∪ A2} and
{A1 ∪ A2, X} (figure 3).

These examples illustrate that the definition of a topology allows for the choice of
closed sets of a topology from bounded subsets of the set X, as well as from unbounded
sets. A mixed variant is possible as well. For example, a topology of base {A1, A2, J }
can be chosen, or the topology based on the whole partition {A1, A2, J, {P1}, {P2}} of
the set X can be chosen. In the latter case, all the elements of topology T are clopen
sets, and topology T is a Boolean lattice where the upper bound U coincides with the
set X.
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Figure 3. The topology of base {A1, A2}. There are two Boolean sublattices {∅,A1, A2, A1 ∪ A2} and
{A1 ∪A2, X}.

Figure 4. Finite topological space {B3, T } with topology T , based on the sets {(0, 0, 0), (1, 0, 1), (1, 1, 1)}.
B3 = (x, x, x) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

The set X may be a continuous set, as in the previous examples, or it may be a
discrete set. In particular, it may be finite. For example, consider the Boolean n-cube
Bn, n = 3, as a set X and the partition " = {{(0, 0, 0), (1, 0, 0)}, {(0, 1, 0)}, {(0, 0, 1)},
{(1, 1, 0)}, {(1, 0, 1)}, {(0, 1, 1)}, {(1, 1, 1)}} that consists of all one-element subsets of
the set X. From this set, some subset of " can be chosen as a base of topology T .
Figure 4 represents a particular case of topological space (B3, T ), with topology T , based
on the sets {(0, 0, 0)}, {(1, 0, 1)}, {(1, 1, 1)}. On the other hand, the topology based on"
contains 28 = 256 clopen subsets. It is a Boolean lattice isomorphic to the lattice P(X).

Generalizing the properties of finite topologies, it can be noted that, considering
any set X and its finite partition " = {A1, A2, . . . , An}, one can construct a topological
space (X, T ) with finite topology T , based on some subset of ". The topology contains
two Boolean sublattices: an upper lattice{U,X} and a lower latticeT \ {X}. In the case
of the base set B = ", both Boolean lattices coincide and the upper Boolean sublattice
degenerates and becomes a trivial Boolean lattice containing only one element. This
finite topology property is depicted in figure 5.
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Figure 5. The finite topology property: considering any setX and its finite partition" = {A1, A2, . . . , An},
one can construct a topological space (X, T ), with finite topology T , based on some subset of ". The

topology contains two Boolean sublattices: an upper lattice{U,X} and a lower latticeT \ {X}.

2.2. Logical models of topological spaces with finite topology

Now, let us show how to construct logical models of a topological space of a fi-
nite topology taking into account properties of base sets as well as their interrelations.
Suppose that each base set has one of the finite number properties {0, 1, 2, . . . , K − 1}.
Moreover, assume, that the base sets participate in the symmetric relations

ρ
m1
0 , . . . , ρ

mi
i , . . . , ρ

ms−1
S−1

where a relation, ρmii , is a symmetric relation if, together with any mi ordered set (mi-
tuple), it contains any of its permutations. (We assume that the system of these relations
is orthogonal, i.e., each mi-tuple participate in only one mi-dimensional relation.) In
addition, it should be noted that the mentioned properties and relations should be defined
based on the real properties of the geometrical or discrete structures of the modelled
objects. Also, the properties of all the elements from the base set of the topology, as well
as the relations on the set of base elements, are numbered 0, . . . , K − 1 and 0, 1, . . . ,
S − 1, respectively.

The information about geometry, as well as about the properties and interrela-
tions of the elements from the base of topology can be represented as a logical function
f (x1, . . . , xN ) or as an equivalent system of Boolean functions.

We use the Boolean N-cube BN as a field of definition (domain) of a logical func-
tion f (x1, . . . , xN), f :BN → {0, 1, . . . , k − 1}, k = max(K, S). This function maps
the elements from the base of the topology to the values defining their properties from
the set {0, 1, . . . , K− 1} of numbers of the properties. Later, if the sets A1, . . . , At from
the base of the topology belong to relation

ρmtt ,

then the function takes the topology element corresponding to the union of these base
sets to the value t from the set {0, 1, . . . , S − 1}. Finally, the function f takes all the
remaining elements of Boolean N-cube BN to the zero value.
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Example 2.3. Let (X, T ) be a topological space, where X = R × R, T is topology,
based on the partition " (figure 1). Assume that the zero-dimensional subsets and the
one-dimensional subsets possess properties 0 and 1, whereas the two-dimensional sub-
sets A2 and A1 have the properties 2 (internal) and 3 (external), respectively. Moreover,
a symmetrical binary relation ρ1

1 is defined on the set ":

ρ1
1 =

{
(Bi, Bj ) | Bi and Bj have the common boundary, or Bi is in boundary of Bj,

or Bj is in boundary of Bi
}
.

The 3-valued function f (x1, x2, x3, x4, x5) of variables x1, x2, x3, x4, x5 corre-
sponding to the sets A1, A2, J , {P1}, {P2} can be defined as follows:

f (1, 0, 0, 0, 0) = 3 (A1 is an external two-dimensional set),
f (0, 1, 0, 0, 0) = 2 (A2 is an internal two-dimensional set),
f (0, 0, 1, 0, 0) = 1 (J is an internal one-dimensional set),
f (1, 1, 0, 0, 0) = 1 (A1 and A2 have the common boundary),
f (1, 0, 1, 0, 0) = 1 (J is in boundary of A1),
f (0, 1, 1, 0, 0) = 1 (J is in boundary of A2),
f (1, 0, 0, 1, 0) = 1 (P1 is in boundary of A1),
f (0, 1, 0, 0, 1) = 1 (P2 is in boundary of A2).

The function f takes the remaining binary 5-tuples to the value 0, in particular

f (0, 0, 0, 1, 0) = f (0, 0, 0, 0, 1) = 0 (P1 and P2 are zero-dimensional subsets).

This function contains all the information required for the reconstruction of the
topological space, and in particular, it allows figure 1 to be redrawn.

If we construct analogous model for the other partition of the same set X shown
in figure 6, we obtain other logical function f (x1, x2, x3, x4, x5) that differs from the
function f (x1, x2, x3, x4, x5) in the following positions:

f ′(1, 0, 0, 1, 0) = 0, f ′(0, 1, 0, 1, 0) = 1

(point P1 is replaced from boundary of the set A1into the boundary of the set A2).

Figure 6. The other partition {A1, A2, J, {P1}, {P2}} of the Cartesian product X = R× R.
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3. Logical models of molecular shapes

This section is devoted to logical models of molecular shapes and their families. It
relates to the previous section in that the topology of a shape is based on the partitioning
of a surface on two-, one-, and zero-dimensional subsets with finite set properties. These
subsets interrelate with each other through known relations. This allows implementation
of the finite topology principle, based on the method of logical modeling introduced in
the previous section.

3.1. Logical models of isoproperty contour surfaces

In fact, for the characterization of the shapes of molecular contour surfaces, such
as MIDCOs and MEPCOs, or an interpenetration of both, the surface is subdivided into
domains satisfying some local shape criteria. This is discussed in detail in [1, chapter 5].
These absolute or relative shape domains satisfy some geometrical or physical proper-
ties. For example, these domains may be thought as unbounded locally convex, locally
concave, or locally-saddle-type subsets of a surface or as unbounded sets deleted from
the shape. More exactly, domains D can be truncated by subdivision into three sets: the
unbounded set C where C ⊂ D, the unbounded set D′ ⊂ D, and the common bounda-
ry J of the sets C and D, i.e., J = clos(C) ∩ clos(D), where clos is the set-theoretical
operation of closure. Set C is referred to as a deletedset and set D′ is referred to as a
truncatedset.

If all the truncated domains, non-truncated domains, deleted sets, and one-
dimensional boundaries (with the possible addition of the zero-dimensional boundaries
of boundaries) are taken into account, a partition of the surface can be obtained. This
partition satisfies all the conditions required by the proposed logical modeling method:
by considering the molecular surface before deletions as a set X, the partitions act as
subsets of X. Depending on the goal of modeling, an appropriate subset of these subsets
can be chosen as a base for topology T . For example, all these subsets can be chosen as
a base, and in general, choosing all of the domains and deleted sets as a base proves to be
most useful. Yet, regardless of which base is chosen, the elements of the topology base
interrelate and possess some finite number properties. Finally, it should be noted that
the same arguments apply to the adequateness of logical modeling in cases if IPCO’s,
VDWS’s, or interpenetrating of the above types of surfaces are used.

Consider some common properties of lower Boolean lattices under the assumption
that all the nontruncated domains, truncated domains, as well as all the deleted sets are
used as a base sets of topology T . For clarity, all of these sets are henceforth called
domains and are denoted as Di1

1 , . . . ,D
iN
1 .

In the general case, T i1...,iss (for s � 2) denotes the maximal finite set that contains
|T i1,...,iss | nonempty subsets of maximal connected components which are subsets of the
intersection of the domains Di1

1 , . . . ,D
is
1 closures. It is assumed that each element of the

set T i1,...,iss is obtained from one of such maximal connected component, after deleting
all the points that belong to closure of at least one other domain. If the deletion of such
points leads to an empty set, that should not be represented in the set T i1,...,iss .
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Assuming that T i11 = {Di1}, the sets T i1,...,iss correspond to elementsDi1
1 ∪· · ·∪Dis

1 ,
s = 1, . . . , N , of a lower Boolean sublattice. By taking into account the previously men-
tioned isomorphism ϕ, the sets correspond to the elements of Boolean N-cube as well.
Therefore, the properties of the sets T i1,...,iss can be used to define a logical function f ,
as was introduced in the previous section. In actuality, the final definition depends on a
preliminary geometrical topological model of a molecular shape, but it is useful to note
some common agreements. For example:

f (0, . . . , 0,︸ ︷︷ ︸
i−1

1, 0, . . . , 0︸ ︷︷ ︸
N−i

) = 0, (3.1)

if D1 is a deleted set.
Moreover, f (a1, . . . , ai , . . . , aN ) = 0, if (T i1,...,iss ) = ∅, where ij are the numbers

of the binary elements aij = 1.
Furthermore, for MIDCO- or MEPCO-based molecular shapes, the function is de-

fined such that

f (0, . . . , 0,︸ ︷︷ ︸
i−1

1, 0, . . . , 0︸ ︷︷ ︸
N−i

) = 1+ µ(Di), (3.2)

and

f (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
j−i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−j

) =
{

1, if clos(Di) ∩ clos(Dj) = T i,j2 �= ∅,
0, otherwise,

(3.3)
where µ(Di) is the curvature index of the domain Di .

Example 3.1. Consider the molecular shape partition, [1] shown in figure 7. It includes
one locally saddle-type domain D1

1, three locally convex domains D2
1, D3

1, D4
1, and one

locally concave domain D5
1. There are four boundaries (closed lines)

L6 = D1,2
2 , L7 = D1,3

2 , L8 = D1,4
2 and L9 = D1,5

2 .

The union of these eight sets coincides with the shape of the molecule, as the sets do not
intersect mutually. Therefore the set

{
D1

1,D
2
1,D

3
1,D

4
1,D

5
1,D

1,2
2 ,D

1,3
2 ,D

1,4
2 ,D

1,5
2

}
is a partition of the molecular surface. If the topological base

(
D1

1,D
2
1,D

3
1,D

4
1,D

5
1

)
,

is chosen, then a finite topology that contains a Boolean sublattice isomorphic to the
Boolean cube B5 is obtained. A shape matrix s(a, b) = s(a, 0) corresponding to some
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Figure 7. The shape domains of a MIDCO surface G(a) relative to some curvature parameter b. The locally
saddle-type D1

1, locally convex D2
1, D3

1, D4
1, and locally concave D5

1 domains, as well as their pairwise
common boundaries (cyclic curves), are shown [1].

isodensity threshold a and a curvature parameter b of zero describes the shape domains
of ordinary local convexity of the MIDCO surface in figure 7 as follows:

s(a, b) =
1 1 1 1 1
1 2 0 0 0
1 0 2 0 0
1 0 0 2 0
1 0 0 0 0

.

The diagonal elements s(a, b)i,i , i = 1, 2, 3, 4, 5, are equal to the common curva-
ture index µ(a, b) for the points within the domain Di

1, while the off-diagonal elements
s(a, b)i,j are equal to 1 if the domains Di

1 and Dj

1 have a common boundary that defines
them as being “neighboring domains”, while the off diagonal elements equal 0 if there
is no such common boundary between the domains.

According to the proposed logical modeling method, the logical model can be rep-
resented as a 4-valued function f (x1, x2, x3, x4, x5) of five variables. The variables x1,
x2, x3, x4, and x5 correspond to the domains

D1
1,D

2
1,D

3
1,D

4
1,D

5
1.

The values of this function on binary 5-tuples, which correspond to the domains
are the following:

f (1, 0, 0, 0, 0) = 2,

(rule (3.2),D1
1 is a locally saddle-type domain, with µ(Di) = 1);

f (0, 1, 0, 0, 0) = f (0, 0, 1, 0, 0) = f (0, 0, 0, 1, 0) = 3,

(rule (3.2), D2
1,D

3
1, and D4

1 are locally convex domains, with µ(Di) = 2);
f (0, 0, 0, 0, 1) = 1,

(rule (3.2), D5
1 is a locally concave domain, with µ(Di) = 0);

f (1, 1, 0, 0, 0) = f (1, 0, 1, 0, 0) = f (1, 0, 0, 1, 0) = f (1, 0, 0, 0, 1) = 1,

(rule (3.3), corresponds to the nonempty sets D1,2
2 ,D

1,3
2 ,D

1,4
2 ,D

1,5
2 which are

the boundaries between the domains).
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The function assigns a value of zero to all of the remaining 5-tuples.
To summarize, it has been shown that the shape matrix describing MIDCOs or

MEPCOs can be used in the construction of a logical model of the MIDCOs or MEP-
COs, expressed as a logical function f :BN → {0, 1, 2, 3} and, hence, as a system of
Boolean functions. The function f is referred to hereafter as a molecular contour func-
tion (MCOF).

Note, that representation of molecular shapes by MCOF as well as by shape ma-
trix may be ambiguous, depending on linear ordering of two-dimensional domains of a
molecular shape. Nevertheless, the following statement is valid.

Statement 3.1. There exists a one-to-one correspondence between the set of molecular
contour functions f (x1, . . . , xi, . . . , xn) representing distinct MIDCOs and the set of
shape matrices.

Indeed, for a given ordering of two-dimensional domains the shape matrix can be
derived from the MCOF, and the MCOF can be obtained from the shape matrix.

3.2. Logical models of van der Waals surfaces

The considered logical models can be implemented for VDWSs only in the special
case when the sets

T i1,...,iss

in the case where s = 2, contain at most one set, or, in the cases where s > 2, are empty
sets.

Therefore, the logical modeling of VDWSs is more complex than in the case of the
MIDCO-based counterparts. Two items need to be accounted for:

(a) the sets

T
i1,i2

2 , s = 2,

can contain more than one set; and

(b) the sets

T i1,...,iss , s > 2,

can be nonempty. Note that these sets can consist of more than one, but less
than N , maximal connected components, whereN is the number of nuclei. All
elements of the sets

T i1,...,iss , s > 2,

are either single-membered sets or empty sets. The single-membered sets con-
sist of a unique element that belongs to a sphere or spheres represented on the
VDWS by some domains

D
i1
1 , . . . ,D

is
1 .
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If the number of spheres to which an element belongs is denoted as k, then, in
the general case, s does not equal k.

Although the theory of logical modelling can be generalized, in the present discus-
sion for clarity it will be restricted to the case where shapes satisfy the criterion that a
VDWS contains at least one domain from each sphere. In this case elementary geometry
shows that, in the case of s > 2, the sets T i1,...,iss satisfy the following properties:

(a) |T i1,...,iss | � 2;

(b) |T i1,...,iss | = 2 implies the equality k = s for elements of single-membered sets
from T i1,...,iss ;

(c) if |T i1,...,iss | = 1 when s > 2 then k ∈ {s, s + 1} for an element of a single-
membered set from T i1,...,iss .

According to the proposed logical modeling method, the construction of logical
models of molecular shapes represented by VDWSs can be achieved by utilizing the
following rules:

• The topological space (VDWS, T ), where VDWS is the modeled van der Waals
surface, and T is a finite topology based on the set B of the VDWS domains

D
j

1 , j = 1, . . . , N

should be chosen. It is assumed that some of these domains have been deleted,
while others have been left in the VDWS.

• The Boolean function f :Bm1 → {0, 1, . . . , N} is defined as follows:

f (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−i

) =
{

0 if Di is a deleted domain,

3 otherwise,

according to the rules (3.1) and (3.2);

f (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0,︸ ︷︷ ︸
j−1

1, 0, . . . , 0︸ ︷︷ ︸
N−i−j

) = ∣∣(T i,j2

)∣∣, (3.6)

in the case, where the weight (the number of non-zero elements) of the N-tuple
r(a1, . . . , an), is greater than two, the indices i1, . . . , is , s > 2, correspond to
the position of the non-zero elements of the binary N-tuple

f (a1, . . . , an) =




0 if
∣∣(T i1,...,iss

)′∣∣ = 0,

1 if
∣∣(T i1,...,iss

)′∣∣ = 1, and s = k,
3 if

∣∣(T i1,...,iss

)′∣∣ = 1, and s �= k,
2 if

∣∣(T i1,...,iss

)′∣∣ = 2.

(3.7)

As previously stated, k is the number of spheres to which a unique element of the
set (T i1,...,iss )′ belongs.
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Note that the function f takes N-tuples of weight 1 to values that are the same as
for MIDCOs and MEPCOs. Therefore, the modeling method may be implemented upon
models such as VDWSs when treated as a form of interpenetrating molecular surfaces.

The domain of f coincides with the N-cube isomorphic to the lower Boolean sub-
lattice of the finite topology T . Assuming that the VDWS contains at least one domain
from each sphere, it can be shown that the function f (x1, . . . , xn) is well defined. This
logical function can be called the VDWS function.

A VDW graph can be derived utilizing the VDWS function. If the VDWS func-
tion f (a1, . . . , ai, . . . , an) is represented as a marked binary N-cube, where the vertices
are marked by the values of the logical function, the VDW graph can be created by
implementing the following algorithm:

1. Delete all the vertices of weight two or greater labeled zero, as well as the
incident edges to and from these vertices,

2. Connect any isolated vertices (a1, . . . , ai, . . . , aN ) of weight greater than two
with all the vertices (a′1, . . . , a

′
i , . . . , a

′
N) of weight two such that (a′1, . . . , a

′
i ,

. . . , a′N) � (a1, . . . , ai, . . . , aN ),

3. Split the vertices (and their incident edges) (a1, . . . , ai, . . . , aN) of weight two
or greater such that f (a1, . . . , ai, . . . , aN) = 2. The splitting should be done
f (a1, . . . , ai, . . . , aN ) times,

4. Replace vertices (a1, . . . , ai, . . . , aN ) on the (r + 1)th level of the graph of
weight greater than two that are given the label 3 by the function.

By reversing the order of the rules, a graphical representation of the VDWS func-
tion can be obtained from the VDW graph. Therefore, both the VDWS function and the
VDW graph represent the same VDWS and the following statement is valid (although
representation of molecular shapes by VDW graph as well as by MCOF is ambiguous in
defense on linear ordering of two-dimensional domains of a molecular shape).

Statement 3.2. There exists a one-to-one correspondence between the set of VDWS
functions representing distinct VDWSs and the set of VDW graphs.

Example 3.2. As a simple example, consider an AB2 type molecule with oscillation dy-
namics consisting of three equivalence classes of shapes, whose representative geomet-
rical topologies are shown in figure 8. Graphical representations of the VDWS functions
for the VDWSs in figures 8(a)–(c) are given in figures 9(a)–(c). They are obtained ac-
cording to the rules (3.2), (3.3), (3.6), (3.7). Note that the value fc(1, 1, 1) = 2 because
there are two single-membered components in the intersection of three closures⋂

i=1,2,3

clos(Di
1) (3.8)

of domains in figure 8(c) (rule (3.6), s = k). The value fb(1, 1, 1) = 1 because there
is only one single-membered component in the intersection (3.8) of three closures of
domains in figure 8(b) (rule (3.6), s = k).
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Figure 8. The topologically different VDWSs in the bending oscillation corresponding to the “umbrella
inversion” of an AB2 type molecular system.

Figure 9. Structural representations of VDWS functions in the bending oscillation corresponding to the
“umbrella inversion” of an AB2 type molecular system (a, b). The white, black, double circled and gray

points correspond to N = 0, 1, 2 and 3 values of the VDWS functions.

Figure 10. The VDW graphs corresponding to VDWS functions derived from figures 9(a)–(c). The vertices
D123

3 , (D123
3 )′ in figure 10(c) correspond to the vertex (1,1,1) in figure 9(c). This vertex was plit according

to rule (iii).

VDW graphs for the VDWSs in figures 8(a)–(c) are given in figures 10(a)–(c) as
derived according to the rules (i)–(iv).

In conclusion, it should be noted that a new model of VDWSs of molecules is
proposed that differs from shape matrix code or VDW graphs, with the advantage that
they are defined as finite functions whose domain is a Boolean lattice. Therefore, in
contrast to the graph structure, their structural representation has a unified form. If under



A. Frolov et al. / Logical models of molecular shapes and their families 407

VDW graphs isomorphism we understand the bijection that preserves the levels of the
vertices and their incidence, then the logical models allow us to reduce the problem of
VDW graph isomorphism to recognition if the corresponding logical functions belong
to the same class (i.e., one can be obtained from another by permuting variables) as a
consequence of the following statement.

Statement 3.3. VDW graphs are isomorphic if and only if the corresponding VDWS
functions belong to the same equivalence class with respect to permutation of variables.

4. Conclusion

A new discrete mathematical model of molecular shape has been proposed that
uses the partition property of a representation of molecular shape.

It was shown that the earlier discrete mathematical models such as shape matrix
representations of MIDCOs or MEPCOs, as well as VDW graphs have logical analogs
of the proposed type. The new model is a unifiedone, since it possesses the same form
for MIDCOs, MEPCOs, as well as for VDWSs. Therefore, it is suitable for mixed
quantum chemical models, particularly for interpenetrating surfaces of different natures.

The families of shapes can be logically modeled and compared by a sequence of
logical models. Logical description of molecular shape structures allows the implemen-
tation of known methods of logical diagnostics to investigate the structural distinction
of shapes and to introduce the metric on the set of molecular shape equivalence classes
avoiding explicit embedding of objects into a vector space. These classes were defined
with respect to the system of properties and symmetrical relations on the topology base
that reflect the natural peculiarities of the molecular shapes.

Notice that although only logical models were introduced, the proposed approach
allows us to implement many other finite functional models. For example, matrix code
can be considered as a two-variable function {D1, . . . ,Dn}2→ {0, 1, 2}. Shape families
can be represented as finite functions from a space of parameter values to the set of
shape descriptors. For example, (a, b)-maps of the shape groups can be considered as
such functions.

Finally, we can notice, that the finite approximation of Cartesian product of the set
M of internal configurations K, the set of thresholds a, and the set of curvature parame-
ters b are partially ordered sets. Taking into account that the set of equivalence classes
with respect to equivalence relation is finite as well, we can perform a mapping from that
Cartesian product into the set of equivalence classes as a multivalued function. Conse-
quently, we can implement partially ordered pattern recognition algorithms [39,40] to
derive a compressed representation of these mappings and also to provide the tool for
recognition of the class from which a given triplet (K, a, b) came. In the latter case
the compressed representation of the mapping mentioned above is implemented as a de-
cision rule. This possibility allows one to design compressed databases of molecular
shapes to be used as decision making systems of a functional type [55,56]. These data-
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bases can be created implementing the proposed logical models of molecular shapes as
well as any other discrete mathematical models, mentioned in the introductory section.
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